HYFORM

hydrogen production from formic acid (FA) $HCOOH \rightarrow H_2+CO_2$

The catalytic reformer has been developed for on-demand hydrogen production. The reformer (a H_2 source) can be coupled with a commercial fuel cell.

AVAILABILITY

Different catalysts and reformers available upon application.

Engineering team available for application-specific developments.

FORMIC ACID AS FUEL ADVANTAGES

Liquid at ambient conditions: \rightarrow easy and cost effective to transport, to store and to handle.

High capacity Liquid Organic Hydrogen Carrier:

- \rightarrow H₂ content up to 53 kg/m³
- \rightarrow H_2 content up to 600 Nm³/m³

FA allows long-term energy storage and fast refuelling (vs batteries slow recharging).

Low volatility, non-explosive fuel.

Common chemical compound available worldwide.

It can be produced from renewable sources.

SPECIFICATIONS

- \checkmark Stable performance during 1000 hours
- ✓ Fast reaction

✓ Reactor volume: 1-2 L/kW_a

✓ Low CO: <3 ppm

✓ Pressure: 1 to 900bar

✓ Operation temperatures: 40° - 90° C.

APPLICATIONS

- ✓ Fuel cell based electricity or backup power generators (both stationary and mobile).
- Transportation: bikes, cars, buses etc.
- ✓ High pressure Hydrogen production and delivery

REFORMER ADVANTAGES

Low cost H_2 source, suitable for both PEMFC and SDFC.

Allows the use of diluted (50-100wt.%) FA for $\rm H_2$ production in a continuous mode.

The catalyst can be shaped into various compact geometries, optimized for specific flow conditions.

No Sulfur.

Boost in process simplicity and safety.

Possibility to split and capture CO₂ before Fuel Cell.

